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ABSTRACT

This paper discusses the mathematical
existence and the numerically-correct

identification of linear and nonlinear aerodynamic

impulse response functions. Differences between
continuous-time and discrete-time system

theories, which permit the identification and
efficient use of these functions, will be detailed.

Important input/output definitions and the
concept of linear and nonlinear systems with

memory will also be discussed. It will be shown

that indicial (step or steady) responses (such as

Wagner's function), forced harmonic responses

(such as Theodorsen's function or those from

doublet lattice theory), and responses to random

inputs (such as gusts) can all be obtained from an

aerodynamic impulse response function. This

paper establishes the aerodynamic impulse

response function as the most fundamental, and,
therefore, the most computationally efficient,

aerodynamic function that can be extracted from

any given discrete-time, aerodynamic system.

The results presented in this paper help to unify

the understanding of classical two-dimensional
continuous-time theories with modern three-

dimensional, discrete-time theories. First, the

method is applied to the nonlinear viscous

Burger's equation as an example. Next the

method is applied to a three-dimensional

aeroelastic model using the CAP-TSD

(Computational Aeroelasticity Program
Transonic Small Disturbance) code and then to a
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two-dimensional model using the CFL3D

Navier-Stokes code. Comparisons of accuracy

and computational cost savings are presented.
Because of its mathematical generality, an

important attribute of this methodology is that it

is applicable to a wide range of nonlinear,

discrete-time problems.

INTRODUCTION

During the early development of

mathematical models of unsteady aerodynamic

responses, the efficiency and power of

superposition of scaled and shifted fundamental

responses, or convolution, was quickly

recognized. This led to the classical Wagner's
function t, which is the response of a two-

dimensional airfoil, in incompressible flow, to a

unit step variation in angle of attack. Similar
functions such as Kussner's function, which is

the response of a two-dimensional airfoil to a

sharp-edged gust in incompressible flow, were

developed as well 1.

As geometric complexity increased, however,
the analytical derivation of these time-domain

fundamental functions became quite complicated

and, therefore, impractical. Ultimately,

frequency-domain aerodynamics for three-

dimensional configurations became the method of
choice for computing linear unsteady

aerodynamic responses 2. For the case where

geometry- and/or flow-induced nonlinearities are

significant in the aerodynamic response, time

integration of the nonlinear equations is

necessary, as is done in unsteady CFD codes,

particularly for aeroelastic analyses. As CFD

cedes have grown in complexity and capability,
there is a very real need to incorporate these codes

into aeroservoelastic (ASE) analyses, loads

estimation, and other preliminary design efforts
in an efficient and accurate manner. Direct

incorporation of a CFD code into the ASE

process is currently not practical due to the high



computationalcostsandtumaroundtimerequired.
As computationalspeedsimproveandasnew
algorithmsaredevelopedtoaddressthisproblem,
thepracticalityof thisapproachmayimprove.
At the moment, however,the efficient
incorporationof theinformationprovidedby a
CFDcodeintodisciplinessuchasASEremains
aproblem.

Attemptsto addressthisproblemincludethe
developmentof transonicindicialresponses3'4'_.
Reference6 developsmodelsof nonlinear
aerodynamicmaneuversfrom an experimental
databaseusingneuralnetworks.References7and
8 providereduced-ordermodelsfor linearand
linearized solutions about a nonlinear condition.

In order to develop robust, mathematically-
correct and efficient nonlinear models of the CFD

response, a mathematically-formal method is

required that is well defined in the time and

frequency domains and that is well defined for

continuous- and discrete-time systems. The

discrete-time Volterra theory of nonlinear

systems fulfills these requirements and was

applied in the present research. This theory has
found wide acclaim in the field of nonlinear

discrete-time systems 9and nonlinear digital filters

for telecommunications and image processing "_,
to name a small subset of references.

Applications of this theory to nonlinear, discrete-

time aerodynamic systems include Tromp and
tl

Jenkins , Rodriguez j2' and Silva 13'14. In Ref. 13,

the concept of applying the Volterra theory to the

development of efficient linear and nonlinear

aerodynamic impulse responses was presented and

demonstrated to be feasible for high frequencies.

In Ref. 14, the identification, and computational

efficiency of linear discrete-time aerodynamic

impulse responses, valid for arbitrary inputs, was

demonstrated using the linear equations within

the CAP-TSD _5 (Computational Aeroelasticity

Program - Transonic Small Disturbance) code.

Nonlinear aerodynamic impulse responses were

identified using the nonlinear equations within

the CAP-TSD code but were limited in scope

because of the particular identification technique

that was used. The present paper removes these

limitations by presenting a mathematically-
correct identification scheme for nonlinear

responses. Reference 14 represents the first time

that aerodynamic impulse response functions

were numerically identified. The concept of

linear and nonlinear aerodynamic impulse

response functions introduces a totally new

perspective on linear and nonlinear, steady and

unsteady aerodynamics, as will be discussed.

The purpose of this paper is to introduce

new, or improved, mathematical developments

that allow the mathematically-correct
identification of linear and nonlinear aerodynamic

impulse responses. The functional classification

of the discrete-time Navier-Stokes equations that

enable the correct application of the discrete-time
Volterra theory to CFD codes is presented. The

fundamental nature of these responses with

regards to classical and modem aerodynamic

theories and the impact of these developments on
fields such as aeroelasticity and ASE is discussed

as well. As an illustrative example, the discrete-

time Volterra theory is applied to the nonlinear

viscous Burger's equation. Then the theory is

applied to a three-dimensional aeroelastic model

using the CAP-TSD code and then to an airfoil

in plunge using the CFL3D 16 Navier-Stokes

code. Comparisons of accuracy and

computational cost savings are presented.

MATHEMATICAL PRELIMINARIES

Discretized Navier-Stokes Equations

The application of CFD codes involves, in
general, the application of the discretized Navier-

Stokes (NS) equations. This is true for the entire

spectrum of equation levels, from the linear
equations to the full Navier-Stokes equations,

including transonic small-disturbance (TSD) and

Euler equations. The only difference between the

different equation levels is the number and type

of simplifying assumptions used to derive the

resultant governing equations. It is important,
therefore, to understand the functional nature of

the NS equations _7 from a mathematical systems

perspective.

Upon convergence of an initial, steady-state

solution, the discretized NS equations form a

discrete-time, nonlinear, time-invariant system.

Reynold's averaging of the NS equations and

inclusion of turbulence models to provide closure

does not alter this aspect of the equations. This

realization, formally stated here for the first time,

allows the application of techniques routinely

used in the modeling and design of nonlinear,

discrete-time filters. In particular, Ref. 18 proves

that discrete-time, nonlinear, time-invariant

systems with memory can be modeled arbitrarily

well using Volterra models, neural networks, or

radial basis functions. An important attribute of



Volterramodelsis thatphysicalinterpretationof
theresultingfunctionsis possible,in thetime
andfrequencydomains,whichoftenrevealsan
underlyingstructureof thesystem.Description
of theVolterratheoryof nonlinearsystemsis
presentedin Refs.13and14,andthereferences
therein.

A time-invariantsystem,alsoreferredto asa
stationaryor autonomoussystem,is a system
whosefundamentalpropertiesdonotchangewith
time. Anexampleof a simple,time-invariant,
nonlinearsystemis apendulum.Althoughthe
fullnonlinearequationofapendulumiscertainly
a functionof time whichexhibitsnonlinear,
unsteadyresponses,neitherthe lengthof the
pendulumnor the massat the endof the
pendulumarefunctionsoftime_9.

A time-varyingsystem,alsoreferredto asa
non-stationaryor non-autonomoussystem,is a
systemwhosefundamentalpropertieschange
with time. Fortunately,for manyof the
problemsin aircraftunsteadyaerodynamics,
aeroelasticity, and aeroservoelasticity,the
governingnonlinearequationsaretime-invariant.
The linearizationof these time-invariant,
nonlinearequationsaboutanoperatingpoint
yields the familiar time-invariant,linear
equationsthatcomprisethemajorityof modem-
day,linearanalysestechniquesinthesefields.

Thememoryofasystem,linearornonlinear,
is a measureof dependenceof thesystemon
outputsfrom previoustimes. The impulse
responseof a linearsystemis the"memory"of
thatsystem.It is a temporalrepresentationof
themannerinwhichandthelengthof timeover
whichaunitperturbationremainsactivein the
responseof thesystem.Convolutionthenis
usedto predicttheexactresponseof thelinear
systemto anarbitraryinput(anyandall steady
andunsteadyinputs)becauseall responsesof the
systemarescaledand shifted superpositions of
this memory function. Likewise, the concept of

memory functions can be extended to nonlinear
systems via the Volterra theory of nonlinear

systems.
Numerical approximations to ordinary and

partial differential equations, such as finite-

difference techniques, are defined by the

dependence of the response on previous values of

input and output. Clearly then, time-accurate,
discretized models, such as finite-difference

models, are systems with memory, by definition.
A discretized version of the NS equations (after

steady-state convergence) is, therefore, a time-

invariant, nonlinear, discrete-time system and the

application of the discrete-time Volterra theory to

this system of equations is a valid mathematical

approach as proved by Ref. 18.

Discrete-time Systems

The modern field of discrete-time signal

processing 2'_is a mathematical systems field that

addresses substantially more issues than just the

sampling of a continuous-time signal. A main

topic in this field is that of digital filter design.

In digital filter design, there exist mathematical

concepts that are quite different from their

continuous-time counterparts. The first of these

is the unit impulse function, or the Dirac delta
function. Whereas the continuous-time unit

impulse is an abstract function, typically
considered impractical for actual applications 2_or

sometimes misinterpreted as an indicial (step)

input 6'2:'23, the discrete-time equivalent, known as

the unit sample function, is a simple, well-

defined and extremely useful function. Digital

filters are designed using this input and its

resultant output known as the unit sample

response. The unit sample function is defined as

u[t] = 1.0 for k=k0
= 0.0 for k_k0 (1)

The application of this input to a linear, discrete-

time system will yield the system's unit sample

response, the discrete-time equivalent of the unit

impulse response. The properties of the unit
sample response are identical to those of the unit

impulse response. Both responses completely

define a linear system and, through convolution,

the response of the system to any arbitrary input

can be predicted exactly without actually

processing the arbitrary input through the

system. This is because the unit sample

response captures the system's complete

frequency content.

A linear system's frequency characteristics

can be determined by applying multiple sinusoids

of varying frequency, applying band-limited

white noise, or by computing the fast Fourier

transform (FFT) of the unit sample response.

The application of multiple sinusoids is,

basically, how linear, frequency-domain, unsteady

aerodynamics are generated. The band-limited

white noise technique implies exploration of

different segments of the system's bandwidth in a

3



piecewise, overlapping, and inefficient fashion.

The most efficient approach is to compute the

FFT of the unit sample response, yielding the

system's fi'equency response. This efficiency is

the result of the fundamental properties of the

unit sample response. Additional evidence of

this efficiency is the fact that the response of the

system to the multiple sinusoidal inputs and the

band-limited white noise can be computed via

convolution of these inputs with the unit sample

response. Therefore, from the single
computation of the unit sample response, all

system responses, from steady (step) to random,

can be generated as well. This concept is well

understood and routinely applied in the design of

digital filters yet appears to be rare in fields

dominated by continous-time concepts.

The concept of convolution is another idea

that is routinely used in digital filter design but

that is perceived as somewhat abstract, and

therefore avoided, by the continuous-time

community. Because it was believed that

practical application of an impulse to an

aerodynamic system could not be performed,

discrete-time aerodynamic impulse responses

were never identified until recently in Ref. 14.
Convolution, in discrete-time, is defined as

y[n] = _h[n-k]x[k] (2)
k=O

where h[n-k] is the unit sample response and x[k]

is the arbitrary input. It is important to
understand that this is not the discrete-time

version of Duhamel's integral 24, which is the

convolution of a unit step response with the

derivative of an arbitrary input. The unit step

(indicial) response is not the same as the unit

sample (impulse)response, as some references
have indicated _'n'23.

The response of a linear system to an

arbitrary function of time, x[k], can be computed
via three methods. The first, or trivial method,

is to process the input through the system itself.

If the system is complex and computationally
intensive, significant computational costs,

including turnaround time, will be incurred. The

second method is to identify the system's unit
step response and then, via convolution with the

derivative of the arbitrary input, obtain the

response of the system using

yIn] = x[O]S[n] + _S[n-k]x'[k] (3)
k=O

where S[k] is the unit step response and x'[k] is
the derivative of the arbitrary input. Equation (3)

is the discrete-time equivalent of Duhamel's

integral. The first term in Eq.(3) must, of
course, be included whenever x[0] is nonzero.

Equation (3) is the correct discrete-time

implementation for indicial (or step)

aerodynamics. It is mathematically-valid if and
only if the step response is correctly identified

and applied in Equation (3). The application of

step functions has typically been a problem in

computational unsteady aerodynamics because of
the downwash equation and the perceived problem

with the derivative of a step input. This issue is

addressed in a subsequent section of this paper.

The third method is to identify the system's

unit sample response and, via convolution with

the arbitrary input, x[k], (Eq. (2)), obtain the

response of the system. Again, proper

identification of the unit sample response is a

requirement for the succesful application of this
method.

Clearly, for complex and computationally-
intensive linear systems, the second and third

methods provide the most efficient method for

computing responses because repeated execution

of the system is not required. The unit sample

response and the unit step response contain all

the necessary information regarding the system's
behavior in a compact form. In addition, the

derivative of the unit step response is the unit

sample response so that only one response, the

step or the unit sample response, is needed to

compute the other. The derivative of Wagner's

function, for example, yields the incompressible,

aerodynamic impulse response due to plunge for
a two-dimensional airfoil 2s. Figure I was

obtained using W.P. Jones' approximation to
Wagner's function 2'. Details regarding this result
and its relation to Theodorsen's function can be

found in Ref. 25.

In this research, the identification and use of

linear and nonlinear aerodynamic unit sample

responses is favored over that of the unit step

responses for the following reasons: (1) The unit

step response can be computed via convolution

of the unit sample response with a step input,

yielding the steady-state solution; and (2)

4



Convolutionusingthe unit sampleresponse
involvestheactualinputwhereasconvolution
using the unit step responseinvolvesthe
derivativeof the input, requiringadditional,
unnecessarycomputationaleffort. The unit
sample responseis the most compact
representationof a linearsystemfromwhichall
othersteadyandunsteadyresponsescanbe
generated.Extensionof thisconcepttononlinear
systemsthenenablestheefficientcomputationof
nonlinearsteadyandunsteadyresponsesdueto
arbitraryinputs.

Identificationof linearaerodynamicunit
sampleresponses_4hasinterestingimplications.
First, it providesanalternativeto the forced
harmonicmethodfor computingunsteady
aerodynamicforcesby computingthe unit
sampleresponsesfor eachmodeandthen
performingthe convolutionswith sinusoidal
inputsofvaryingfrequency.Thiscouldbedone
moredirectlybyperformingaFouriertransform
ofeachofthemodalunitsampleresponses.

Theunsteadyaerodynamicfrequencydomain
maybeavoidedaltogetherby performingthe
aeroelasticanalysesdirectlyinthetimedomain_3.
Thisis doneby couplingtheaerodynamicunit
sampleresponseswith thelinearstructurein a
closed-loopsenseandobtainingthetime-accurate
aeroelastictransients.Sincethe aerodynamic
unit sampleresponseis validin thecomplex
plane,thereis no needfor rationalfunction
approximations23(RFAs)thatextendtheforced-
harmonicresponses,valid only along the
imaginaryaxis,tothecomplexplaneviaanalytic
continuation.Currentmethodsfor generating
RFAs,limitedbyaspecifiedfrequencyrangeof
interestto generatea low-ordermodel,are
actuallymodelingthatportionoftheunitsample
responsethat containstheparticularfrequency
range of interest _3. The aerodynamic unit sample

response can also be used to realize a linear,
discrete-time, state-space system 26. This

approach was investigated by the author and will

be the subject of another paper.

Linear frequency domain and RFA methods

are not applicable to nonlinear aerodynamics and,

consequently, the generation of time-accurate,
aeroelastic transients is necessary. The discrete-

time Volterra theory of nonlinear systems, along

with new mathematical developments presented

in this paper, provides a formal method for the

identification of nonlinear unit sample responses.

This results in significant computational

efficiency when applied, for example, to a CFD
code.

Aerodynamic System Input Definition

An important conceptual development of Ref.

14, and its subsequent improvement in the

present research, was the mathematically-correct

definition of the input to an unsteady

aerodynamic system for the discrete-time domain.

The input function consists of the downwash
function, which, for the excitation of a given
mode is written as

w(x,y,t) = phi'(x,y)ou(t) + phi(x,y)ou'(t) (4)

where phi(x,y) is the modeshape, phi'(x,y) are

the slopes of the modeshape, u(t) is the

generalized coordinate, and u'(t) is the derivative
of the generalized coordinate. The discussion

will be limited, temporarily, to the linear case.
The current method for the excitation of

aeroelastic modes within a CFD code involves

the definition of a "smooth" function defined as

u(t) = dc)*exp(-w(t-to)**2) (5)

where do is the maximum amplitude desired, w is
the width, and to is the time at which the

maximum amplitude is reached. This Gaussian

curve (Equation (5)) is referred to as the

exponential pulse function. This exponential

pulse is input to each of the modes of the system
to obtain the set of exponential pulse responses,

about a nonlinear steady state solution 27"2sthat

are then transformed to the frequency domain for

use in standard linear analyses techniques. This

should not be confused with the unit pulse

response mentioned throughout this paper.

Whereas the unit pulse input (Eq. (1)) excites all

the frequencies for a given mode, the exponential

pulse input will excite only the particular range
of frequencies defined by the width of the

exponential pulse. This can be explained using

Eq. (4) as follows.

From Equation (5), the downwash equation
consists of the first term which multiplies u(t)

by the slopes of the modeshape added to u'(t)

multiplied by the modeshape. When the shape of

u(t) is narrowed, then the derivative term, u'(t), is

much bigger and changes more rapidly than it



doesforthewiderpulse,therebyexcitinghigher
frequencies.Shapeoptimizationmay,therefore,
haveto be performedto obtainthe desired
frequencyrangeof interest.Typically,a "wide"
pulseis recommended,forcingtheu'(t) termto
besmall.

A criticaldrawback,however,is thatthe
exponentialpulseis perceived,erronously,asa
singleinput.Thatis,thefastFourierTransform
(FFT)of theoutputgeneralizedforceis divided
bytheFFToftheperceivedsingleinput,u(t),to
obtainthelinearizedfrequencyresponsefunction
forthatgeneralizedforce.Butinspectionof Eq.
(4)clearlyshowsthatthedownwashfunctionisa
two-inputfunction.Theuserdefinesu(t)butthe
quantitythatis inputto theflowsolveris Eq.
(4), whichincludestheeffectof u'(t) aswell.
Becausethisderivativeis computedanalytically
internalto thecode,it is invisibleto theuser,
althoughit is certainlynot invisibleto theflow
solver.

Inspectionof Eq. (4) for a plungemode
revealsthat thefirst term is identicallyzero
becausetheslopesof a plungemodearezero.
Therefore,theonly temporalfunctionthat is
actuallyinputto theflowsolveris u'(t). Fora
plungemode,thedenominatorof thefrequency
responsefunctionshouldbetheFFFof u'(t),not
theFFTof u(t).Thiswill bedemonstratedusing
convolutionwithexamplesfromCAP-TSDand
CFL3Din theresultssectionofthispaper.

It is becausethis secondterm of the
downwashinputhasbeenignoredthatwiggles
appearat lowerorhigherfrequencies,depending
on theinputu(t),in earlyapplicationsof the
technique27.Thereasonfor thesuccessof the
techniqueto dateis thatformostmodes,avery
wideu(t)termresultsin averysmallu'(t)term,
therebyexciting, predominantly,the lower
frequencyrangewhichis, typically,wheremost
analysesaredesiredanyway. If an accurate
determinationof theentirefrequencyrangeof a
modeis desired,thenthesecondtermof the
downwashfunctionmustbe includedin the
analysis.In termsof computationalefficiency,
theexponentialpulseresponsedoesnotpossess
anyof themathematicalpropertiesof theunit
sampleresponsenorcanit beformallyextended
tononlinearsystems.

Themisinterpretationof thedownwashasa
singleinputhasledto thefalseconclusionthat
impulse(orunitpulse)andstepinputscannotbe
appliedtoaCFDcodebecausetheseinputswill
resultinnumericaldifficulties.Thereasoningis

thattheapplicationofaunitpulse,or unitstep,
inputasu(t)wouldleadto a verylarge,if not
infinite,derivativeterm,u'(t). Sotypically,a
stepinputis modified,or made"smoother",so
thattheu'(t)doesnotcausenumericalproblems.
These"smoother"responses,however,arenot
mathematicallyconsistentwith the strict
definitionof unitpulsesorunitstepinputsand
so will yield inaccuracieswhen used in
convolution.Theunit pulseandunit step
functionshavea very precisemathematical
descriptionwhichallowsfor convolutionto be
applied. Any deviationfrom this precise
definitionwill reduce,orpossiblyeliminate,the
accuracyoftheconvolution.

Mathematically,thedownwashequation(for
a givenmode)is clearlya two-channelinput.
Forthelinearcase,eachtermof thedownwash
equationcan,andshould,betreatedasaseparate
inputchannel_4. For thenonlinearcase,the
responsedueto thesumof thetermsof the
downwashwill notbeequalto thesumof the
separateresponsesdueto eachterm of the
downwash.Theinputs,however,stillneedto be
treatedasindependentinputs.Thisdifficultywas
solvedby computinga combinedunit sample
responsethatconsistsof a unit sampleinput
appliedtoeachofthetwoinputssimultaneously
while usinga deconvolution2_techniqueto
maintain mathematicalaccuracy. This
deconvolutiontechniqueidentifiedthe proper
temporalfunctionthatcanbe usedwith the
combinedunit sampleresponseto yield the
correctfinalresponseforthelinearcase.Since
thecombinedmotionof thesystemdueto the
combinedinputsofthedownwashisthesamefor
thelinearandnonlinearcases,thesamecombined
motionis usedin the linearand nonlinear
convolutions.Theeffectivenessof thismethod
will bepresentedin theresultssectionof this
paper.

VOLTERRA THEORY

The discrete-time Volterra series for a

truncated, second-order, time-invariant, system
has the form



N
y[n] = h0 + ,_,hl[n-k] x[k] +

k=O

N N
Y. _h2[n- kl,n- k2l x[kll x[k2]

kl=Ok2=O

(6)

where y[n] is the response of the nonlinear

system to x[k], an arbitrary input; h_ is the mean

value about which the response is defined; h I is

the first-order kernel or the linear unit sample

response; and h2 is the second-order kernel.

Details of the theoretical definitions of this

method, including identification of the kernels,
can be found in Refs. 13, 14 and all the

references therein. As in Refs. 13 and 14,

modeling of the nonlinear aerodynamic system
will be limited to identification of the first- and

second-order kernels.

An intuitive explanation of the application of

this approach to a nonlinear system can be stated

as follows. It is a well-established procedure to

linearize a nonlinear system by expanding the

nonlinear terms in a Taylor Series about a chosen

point. The resultant Taylor Series, if expanded
to sufficient terms, is an excellent approximation

to the actual nonlinearity. That is, there are no

restrictions on its range of applicability regarding

input amplitudes. As the series is truncated by

gradual elimination of the higher-order terms

from highest to lowest, limitations on the range
of applicability of the series approximation

become more restrictive until the only term left

is the linear term, the most severely restricted

term of all. If higher-order terms are gradually

added back in to the series approximation, one at

a time, the accuracy of the approximation is

improved and the range of applicability is
increased as well. The present method is,

therefore, a method that re-instates higher-order

terms that were removed during the linearization

of the equations. This will yield improved

accuracy over the purely linear solution and will

increase the range of applicability as well.

Also, when a "small" (or "linear") input is

applied to a nonlinear system, there is an

implicit assumption of the equivalence between

the nonlinearity and its series expansion. This is

evident because it is in the presence of a series

expansion formulation that a "small" input will,

in fact, yield the "linear" portion of the response

since the higher-order terms (second-order and
above) are much smaller and, therefore,

negligible. The accepted practice of using a

"small" amplitude exponential pulse response
(within a CFD code, for example) to excite only

the "linear" portion of the response about a
nonlinear solution implies a series

approximation to the nonlinearity. As a result,
this "small" input approach offers additional

validation to the present application of the
discrete-time Volterra theory, which seeks to

identify the next higher-order term after the linear
term.

Furthermore, the first-order term is more

accurate than the purely linear term because the

first-order term is derived with knowledge of the

second-order, or higher-order, terms. Therefore,

for a second-order nonlinearity, the fast-order

term is the proper and correct linearization. The

first-order term can be considered to represent a

"mean" value of the response with the second-

order term representing a higher-order variation
about that mean.

The success of linearized aerodynamic

predictions for certain flight regimes, and under

certain small perturbation assumptions, is due to
the fact that highly nonlinear phenomena have a

negligible impact on the net effect of various

responses at these conditions. It does not mean
that rotational, viscous, and turbulent effects

disappear from the flow at these conditions, but
rather that these effects do not excite higher-order

effects sufficiently to affect the overall response.

Increasing the order of this restricted linearized

approximation to model higher-order effects is,

therefore, a logical step.

The computational efficiency of the present

technique is due to the following features of the

method. 1). Identification of the first- and
second-order kernels eliminates the need to re-

execute the code. 2). The kernels can be coupled

with a structure in a closed-loop sense "outside"
of the CFD code, on a workstation, sidestepping

the current, very expensive method of solving the

aeroelastic equations of motion within the CFD

code. 3). The identification of the kernels is

geometry independent. The kernel of a three-

dimensional configuration is, topologically, no
different from the kernel of a two-dimensional

configuration. The only difference is the initial
cost of identification that requires the use of the

CFD code. The complex CFD model, consisting

of three spatial variables and one temporal

variable, is mapped onto the unit sample

7



response, a compact function of time only. The

modal approach and the definition of boundary
conditions within a CFD code make this

mapping possible. 4). This technique permits a

unified approach for generation of compact,

linearized and nonlinear, steady and unsteady

models from the same, arbitrarily complex CFD

model (complete configuration, finest grid, most

detail), including, of course, stability derivatives.

RESULTS

Linear CAP-TSD

The linear equations within the CAP-TSD

code were used for comparisons of unit sample

and step responses. The computational model is

a rectangular wing with an aspect ratio of two.

All results presented are for M=0.9. Shown in

Figure 2 is a comparison of the plunge unit

sample response and the plunge unit step

response. Convolution of the unit sample
response with a unit step also yields the unit step

response, as shown in Figure 3. Convolution of

the unit sample response with the input shown
in Figure 4, u'(t), yields the exact, CAP-TSD-

generated result, also shown in Figure 4.

Convolution of the plunge unit sample response
with u'(t), instead of u(t), yields the correct

result, consistent with the discussion regarding

Equation (4) in a previous section.

These results demonstrate the relationship

between a unit sample response and a unit step

response for a linear unsteady aerodynamic

system and the correct application of these

functions. Also, it is important to realize that

the unit sample response, when convoluted with

a step input results in the steady-state solution,

as shown. Therefore, unit sample responses can

be used for predicting the steady and unsteady

responses of a system. This applies to the

nonlinear case as well where the savings in

computational cost and time are of greater

importance.

Viscous Burger's Equation

The I-D viscous Burger's equation is defined
as

3u 3u 32u
-- + u-- = _-- (7)
3t 3X 3X 2

and is typically used as a simplified model of the

Navier-Stokes equations for evaluating the

effectiveness of numerical methods _9. It is used

here to demonstrate the effectiveness of the

discrete-time Volterra technique. The numerical

solution is implemented via a simple forward-in-
time, central-in-space (FTCS) method.

The identification part of the process consists

of the generation of the first- and second-order

kernels of a selected grid point due to
perturbation of the end-point boundary condition.

Shown in Figure 5 is the first-order kernel of the

system, revealing a well-behaved and compact

function. Shown in Figure 6 are the first twenty

terms of the symmetric second-order kernel.
These terms indicate a second-order nonlinear

memory that goes to zero fairly quickly.

Shown in Figure 7 is a comparison of several

responses due to step inputs of increasing
amplitude for the actual numerical solution, the
convolution of the first-order kernel with each of

the inputs, and the convolution of first- and

second-order kernels with each of the inputs. As

the amplitude is increased, the error between the

actual ("true") response and the first-order

response increases, indicating an increasing effect

of the nonlinearity as amplitude is increased.
Addition of the second-order convolution shows a

significant improvement in accuracy, as seen in

Figure 7. The crossing over of the convolved

response for the largest step response could be an

indication of a convergence limit or the need for
additional terms of the second-order kernel. The

improvement in response with the addition of the

second-order term is, nontheless, evident. Using

only the first-and second-order kernels, steady-

state responses of the nonlinear system can be
computed without re-execution of the actual

numerical system. It is interesting to note that,

for a certain range of amplitudes, the first-order

response may be sufficient, depending on the

level of accuracy desired.

Actual and convolved responses, using the
same first- and second-order kernels, due to

sinusoidal inputs were generated 25. Shown in

Figure 8 is the comparison for one of these

inputs. Again, the comparisons were excellent
with the combined first- and second-order

response showing the best agreement with the
actual responses. In the case of a purely linear

system, these responses could be used to generate

the frequency response function of the system, as

is done in the doublet lattice technique for linear

aerodynamic systems. Therefore, whereas the

unit sample responses are valid in the complex

domain, the forced harmonic response, which can

8



be generated from the unit sample response, is
valid only on the imaginary axis. The unit

sample responses (linear) and first- and second-

order kernels (nonlinear) do not have any such

limitation. The only limitation of the nonlinear

functions is that the radius of convergence of the

series is limited by the norm of the input t3,t4,

which depends on the system being investigated.

These functions are therefore more powerful and,
at the same time, more efficient than any other

responses that can be obtained from a given

system. This is because all other system

responses are the result of a convolution of the

system's unit sample response with some

arbitrary input.

Shown in Figure 9 is a comparison of the

actual, first-order, and first- plus second-order

responses due to a quasi-random input from a

uniform probability distribution. Again, the
comparisons are reasonable for the first-order

only and excellent for the first- plus second-order

responses. This is analogous to the computation

of the response of a nonlinear system (aircraft)

due to a random input, such as a gust. Therefore,

just as in the linear case, the first- and second-
order kernels can be used to predict the response

of the nonlinear system to any arbitrary input,

which is an infinite set of possible inputs.

Nonlinear CAP-TSD

The nonlinear TSD equation is solved within

the CAP-TSD code for a rectangular wing with a

NACA0012 airfoil section undergoing plunge

and an aspect ratio of two at a Mach number of

0.9. Figure 10 is a comparison of nonlinear

CAP-TSD responses, due to plunging motions

of different amplitudes, with the convolved
results of the first-order kernel with the same

inputs. The linear CAP-TSD result for the first

amplitude is also shown for comparison. For
this mode, the first-order kernel seems to be

sufficient to capture the range of responses. This

is not surprising given the nature of the TSD

equation. The cost for ten of these types of

responses using CAP-TSD directly is 38,000
CPU secs and 15 hours turnaround time. The

cost using the first-order convolution for ten of

these types of responses is 4,150 CPU secs and
2.04 hours turnaround time. Most of the cost of

the first-order convolution is the initial

identification part of the process since each
convolution itself took only 75 seconds on a

workstation. As the need for the response of the

system to arbitrary inputs (motions) increases,

the cost of the method decreases because once the

unit sample responses are obtained, the CFD
code need not be re-executed.

Figure 11 is a comparison of the actual
nonlinear CAP-TSD solution for the same wing

undergoing an arbitrary pitching motion and the

response obtained by the convolution of the
combined In-st-order kernel and the appropriate

input, obtained as described in an earlier section
of the paper. The comparison is reasonable, but
for this mode, the second-order terms are needed 2_.

The computational efficiency has, however, been
doubled and is now mathematically correct for

nonlinear responses. The reason for this is that

instead of computing two responses per mode

(one for each term of the downwash function, Eq.

(4)), only one response per mode is needed.

CFL3D (version 5.0)

Navier-Stokes results for a dense-grid RAE

airfoil _6 with the Spalart-Ailmaras turbulence

model undergoing plunge at M=0.75 were

computed at a time step of 0.001. The RAE

airfoil grid is presented in Figure 12.

Comparison of the CFL3D responses with
the first-order convolved responses, as well as a

linear response, are shown in Figure 13. The
comparisons are excellent, with decreasing

accuracy as the amplitude increases, similar to

the viscous Burger's equation results. As

amplitude increases, so does the need for second-
order kernels. Details for this case and higher

Mach numbers (increased nonlinearity) can be

found in Ref. 25.

These results prove the applicability of

discrete-time, nonlinear, unit sample responses at

the NS equation level, as discussed in the

beginning of the paper.
The cost of each CFL3D run was about

2,000 CPU seconds. The cost of the first-order
kernel identification was 400 CPU seconds

because the kernel goes to zero in less than 100

time steps. The cost of each convolution,

performed on a workstation, was 30 seconds.
The most important point, however, is that a

compact model has been identified that is valid

for a range of amplitudes without re-execution of
the code.

CONCLUSIONS

The mathematically correct and numerically-
accurate identification of linear and nonlinear,

9



discrete-time aerodynamic impulse responses was

presented. For the linear case, the aerodynamic
impulse response functions were used to

reproduce exactly the responses of a linearized
three-dimensional aeroelastic CFD model to

arbitrary aeroelastic input motions at a fraction of

the computational cost and time. It was shown

that the response to step (steady), sinusoidal, and

random inputs can all be computed from an

impulse response function, establishing the

aerodynamic impulse response function as the

most fundamental aerodynamic function that can

be extracted from a discrete-time, aerodynamic

system.
For the nonlinear case, the existence,

identification, and application of nonlinear,

discrete-time, aerodynamic impulse responses was

presented. Applications of the method to the

nonlinear viscous Burger's equation revealed the
existence of well-behaved first- and second-order

impulse response functions. The method was

then applied to nonlinear aeroelastic

using the CAP-TSD and CFL3D

results prove the existence of these

complex, three-dimensional CFD

their application demonstrates their

computational efficiency.

CFD models

codes. The
functions for

models and

accuracy and
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Figure 4 Comparison of responses, due to arbitrary plunging
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Figure 2 Comparison of unit sample and indicial responses
linear, M=0.9, DT=0.001
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Figure 5 The first-order kernel of the response in velocity
to unit perturbation for the viscous Burger's equation.
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Figure 3 Comparison of indicial responses, linear.
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Figure 6 Twenty terms of the second-order kernel of velocity
due to unit perturbation squared for the viscous
Burger's equation.
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Figure 7 Comparison of actual (A), first-order (1), and
first-+ second-order (I +2) step responses for the
viscous Burger's equation.
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Figure 10 Comparison of actual nonlinear and first-order
convolved for three plunging motions,
M=0.9, DT--0.001
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Figure 8 Comparison of actual (A), first-order ( I), and
first-+ second-order (1+2) harmonic responses for

the viscous Burger's equation.
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Figure ! l Comparison of linear and nonlinear, actual and
convolved, responses for CAP-TSD model pitching
at M=0.9.
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Figure 9 Comparison of actual (A), first-order (1), and
first-+ second-order ( l +2) responses due to quasi-
random imput for the viscous Burger's equation.
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Figure 13 Comparison of plunge responses for RAE airfoil

at M---0.75, Navier-Stokes with S-A turbulence model.


